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! 1 ABSTRACT

A new adaptive processing algorithm, called Weighted Covariance Estima-

tion (WCE), for the detention of signals in inteiference of unknown character

is presented. Its main advantage over present techniques, such as Sample

Matrix Inversion (SMI), is its tendency not to suppress desired signals

present in the learning data.

WCE and SMI are compared for a radar problem of practical interest,

adaptive MTI from a moving platform, using both simulated and actual radar

data.
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INTRODUCTION

Adaptive array processing is a powerful technique for detecting known

signals immersed in a Gaussian interference background. The statistics of

Gaussian interference are completely characterized by a covariance matrix

which, together with the signal, determines the optimum receiver structure.

If the covariance matrix is not known, it must be estimated from the available

observations.

The problem of interest here is the adaptive detection of radar returns

from moving targets in the presence of ground clutter and receiver noise. The

radar return from each transmitted signal is received by M sensors and matched-

filtered. The resulting outputs are sampled at the Nyquist rate, yielding

complex samples in N range cells from each sensor. One (vector) observation

consists of the M complex samples from a particular range cell. To obtain the

necessary number of independent observations of the interference process, it

is commonly assumed that the interference covariance matrix is the same in

every range cell. The maximum likelihood estimate of the covariance matrix is
(21then the sample covariance matrix [ , which is inverted and used to determine

the optimum receiver weighting [
. This technique has been called Sample

Matrix Inversion (SMI).

This paper proposes a different model for the interference statistics and

derives the maximum likelihood estimate of the interference covariance matrix.

This estimate is more expensive computationally than the sample covariance,

but offers greater immunity to the suppression of desired signals.

The performance of the algorithm is compared with that of SMI using both

simulated data and real data from an airborne MTI radar.

Adaptive Detection

The problem of detecting a (complex) signal in colored Gaussian inter-

ference given K (scalar) complex observations may be stated as follows:

Under hypothesis H (no signal present), the observations are of the form
o

Ho0 zk m nk k = I . . .K
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while under hypothesis H1 (signal present) they take the form

HI: Zk  a k() + n k

Here 8 is an unknown complex number, acknowledging the fact that the

amplitude and phase of the signal are unknown. Any additional unknown param-

eters are contained in the vector argument a. Under the Gaussian assumption,

the interference is completely characterized by its first- and second-order

statistics

E(n k E(n kn) = 0

E(n n) = AkZ

The detection strategy is based on the generalized likelihood ratio test

max p(Zio,a,HI) H

8,a 1
9.(z) => ~<

p(zIH 0 H
0 0o

It can be shown that the test reduces to

K (aA~z~H1

max (1*))A z Z Xi
a H

0

Thus each observation zk is multiplied by a complex weight wk , the resulting

complex numbers are summed, and the magnitude of the resultant is compared

with a threshold. The weighting vector w is given by

-1
w A A(a)

t * denotes the complex conjugate of a scalar and the complex conjugate

transpose of a vector or matrix.
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where a is the vector of parameter values that maximizes (1).

When some or all of the elements of A are unknown, the test becomes

max p( la,a,A ,H

L(z) max p ( j Au,H o )
A 0u

where A denotes the set of unknown elements of A. Evidently, if the numberu

of (real) unknown parameters exceeds the number of (real) observations, the

observation space cannot be mapped 1:1 into the parameter space. Additional

independent observations are required in order to form meaningful estimates.

In most practical detection problems, the presence of a signal is an

unlikely event. Multiple independent observations under H1 are thus not

available. On the other hand, the interference environment is often statisti-

cally stationary (or quasi-stationary) in time and/or space, so that addi-

tional independent observations under H (no signal) are easily obtained. In0

such cases, it is reasonable to estimate interference statistics assuming that

H0 is true, and use the results to estimate signal parameters.

Specifically, if N independent observations zi' "'EN are available under

Ho, find the maximum likelihood estimate A of all the unknown statisticalo u

parameters. Given another independent observations+l, use

max p(z,1 f,a,Au ,H)

p N+ IAu,Ho)

as the detection statistic to decide whether or not a signal is present in

zN+I"In reality, of course, any of the z may contain a signal, so the
41-N -n
estimate of the interference statistics is based on all N+l observations, and

used to test each observation for the presence of a signal. The hope is that

the presence of a few signals in the N+l observations will not seriously per-

turb the estimates of interference statistics.
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[3]

The Sample (covariance) Matrix Inversion (SMI) technique is a special

case of this adaptive detection strategy in which the entire interference

covariance matrix is unknown, but assumed constant for all observations.

Goodman shows [2 ) that the maximum likelihood estimate of the covariance matrix

is the sample covariance matrix

^ 1 N

n=l

and derives the joint characteristic function and probability density of its
2

N real random variables.

This paper proposes an alternative model in which the interference co-
th

variance matrix for the n independent observation is of the form

A 2 C (2)
n n

2
where the variances {o, n=l, ..N) and the elements of C are unknown.

This form of the covariance matrix is suggested by the airborne multi-

antenna radar problem. The assumption of a single interference covariance

matrix common to all range cells does not seem appropriate, since clutter

reflectivity often varies significantly from range cell to range cell. However,

some sort of statistical regularity across range cells is needed; otherwise,

there are too many parameters to be estimated.

The derivation of the clutter covariance matrix for this problem is

presented in Appendix A in order to highlight the many assumptions and approxi-

mations which are involved. The result is that the clutter covariance matrix

has the form given in (2). The covariance matrix of interest is actually that

of the interference, which consists of both clutter and thermal noise. This

matrix takes the form
A 2 c2

A = aC C+a21
n n o

2
where a is the thermal noise power per complex sample. The covariance model

0

used in this paper is valid only if the clutter return is much larger than

thermal noise.
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Derivation of ML Covariance Estimate

The joint probability density of N independent vector observations of

interference, each having M complex elements, is

. . M 2M en=1 w n CI n

The ML estimates maximize this expression, or equivalently its logarithm,

i~ 1 *-
£ = in p(z,..z) = -MN£nr -My£na 2 -NinICI - -2 z C Z (3)

a n

with respect to { 2 >0, n=l, ...NI and the matrix C. This maximization willn 2
first be performed with respect to a , with all other parameters held fixed.[ n

The log likelihood ratio (LLR) can be written as

--MNnr -NknICI +Y i[n [ exp - n z C- ]
2M2-n -n

°n an

Each term in the sum has the form

£n(xMe - a x ) a,x > 0

M
which has a unique maximum at x -. Thusa

^2 1 *-1
Y =-z C zn -n --n

* 2
is the ML estimate of a , if C is known.n

Consider next the maximization with respect to the M x M matrix C, with
2 [2]

the a fixed. Following Goodman , the LLR can be writtenn

5
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k = constant -NkniCi -NTr{C- S)

zz

where S = 2 2 Goodman's proof can then be applied unchanged to estab-

n

lish that

C=S
2

is the maximum likelihood estimate of C, provided the a are known.
2 n

In fact, both C and the a are unknown. Consequently, the ML estimates

must be obtained as the simultaneous solution of the equations
*

zz
-n-n (4)

n

^2 1 *^-l
- z c-z (5)

n M-n -n

In general, the solution must be obtained numerically, by iteration.
Start the iteration by assuming

co = Lz z
0 N .- n-n

choosing the real constant b so that (C) = 1. Invert C and compute the
l2 o

a according to (5), use these to compute a better estimate C1, rescale it,n

and continue until convergence, as indicated by a sufficiently small change in
2

the a , is obtained. The rescaling is possible because the parameters speci-

fied in the model appear always as products; any one of them may be specified

arbitrarily. This can be seen in the likelihood equations (4), (5) by the
2 -1 2fact that if C,a constitute a solution, then so also do bC,b a . The solution

can thus be rescaled at any point in the iteration.

For brevity, this iterative algorithm will be called Weighted Covariance

Estimation (WCE).
* Alternatively, the superfluous parameter could have been specified at the

outset. However, it is felt that this approach results in a somewhat smoother
exposition.
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A disadvantage of the algorithm is the large amount of computation re-

quired. At each stage of the iteration, a square matrix whose dimension is

that of the observation vector must be inverted.
When the dimension of the observation is 2, special simplifications

occur, and the solution can be made more explicit.

Special Case : M = 2

After maximization with respect to C, the LLR takes the form

k = constant -NiniSI -M £n an2

in the special case M = 2, the determinant of S can be written
* 2

n n n
Let

Zn2 1 'Znl
12

_~ >0n = N 2 - 0Znl n

The determinant becomes

lsi = EWn WI~n 2 - I W~* 2

1 2 iT

E Zw w -I -w Rw
2mnm nmn 2W-

where 2

R =km - n' (.6)
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In terms of the new unknown parameters {w } the LLR is given by
Tn

Z = constant - NynwTRw + 2E Inwn

Setting the derivatives with respect to the w equal to zero yields them
set of equations

1 T
w (Rw) =-w Rw m N
m -m N- -

The solution is clearly independent of the scaling of w. Thus, it suffices

to seek the solution of

w (Rw) = 1 m=1...N (7)
m -m

and scale the w's afterward so that

Sll = C1l = Wn = 1

Explicit solutions of (7) have been obtained for N < 4.

N = 2: Any two positive numbers.

N = 3: Wl :W 2 3 R 23 :R13 :R12

N=: ww~~ C .( RR3) : ) .(R12R13R2
N 4: W:W2 :W3 :W4 = (R23R24R34) :(131434 (R12 R1 4R24  121323

For N > 5, analytic solution becomes prohibitively complicated, and an

iterative solution is again required. Assume initially that all the w's are

equal to N-1 and solve equation (7) iteratively.

w (n+l) m = 1,...N (8)
m (Rw(n))m

* In the case N=2, these equations degenerate into identities. In this case,

the LLR is independent of the w's. Any two numbers summing to 1 will serve
equally well.
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Renormalize after each iteration so that Ew = 1, and continue until con-m

vergence is obtained.

Once the w's have been determined, the ML estimate of the matrix C can be

computed.

1 W~*

N n n

C S (9)

1 1EWnn2
N n n N nn

This algorithm is considerably simpler than the one for general M because

the weights are determined iteratively from the observations, without matrix

inversion, and the normalized covariance estimate C need be computed only

once.

Outlier Rejection Property

The special form taken by the likelihood equations for M = 2 makes possi-

ble an interesting heuristic explanation of the "outlier rejection" property

of the WCE algorithm. This behavior explains its relative immunity to corrup-

tion by desired signals hidden in the interference.

The mechanism for outlier rejection lies in the iteration (8) for the

weights. Suppose that the ratios n are all nearly the same, except for &k'

and that the iteration begins with uniform weights w = 1/N. The elements ofthe kthn

row and column of the matrix R defined by (6) will be much larger than

the other elements. This will cause the kth element of the vector Rw to be

much larger than its other elements. The kth weight for the next iteration is

the reciprocal of this element and so is much smaller than the other weights.

The outlier has thus been deweighted.

9



The presence of a signal in a particular one of the observations causes

the ratio for that observation to differ from those of other observations

containing no signal. This observation then contributes little to the est".-

mate of the covariance matrix. When this cell is processed for detection

using the estimated covariance, improved detection probability results.

If all observations are assumed to be statistically identical, there is

clearly no reason to treat one differently from any other. Removal of the

assumption allows this possibility. The fact that it results in greater

immunity to desired signal suppression is entirely fortuitous, however, since

no mention of such signals was made in the model. It may be possible to

introduce the occasional presence of signals into the model in a statistical

fashion and obtain an algorithm with even better performance.

It is conjectured that the algorithm has similar immunity for any value

of M. However, no plausibility argument has been found, and no simulation or

experimental results are available.

Convergence

The iterative procedure has been programmed for the special case M = 2

and no problems with convergence have been encountered. However, convergence

has not been proven theoretically.

If the statistical model proposed here is valid, WCE will improve upon

SMI in the sense of producing a larger value of the generalized likelihood

ratio. The initial covariance estimate used to start the iteration is the SMI

estimate, and each subsequent iteration step increases (or at least does not

decrease) the likelihood ratio. This is not inconsistent, since SMI is based

on a simpler model. The real issue is whether or not the WCE model is a

better representation of the physical situation for the particular problem of

interest.

Accuracy of the Estimator

As the WCE estimator itself is defined only implicitly, no direct analyti-

cal assessment of its accuracy seems possible. One can, however, evaluate the

Cramer-Rao bound on the joint covariance matrix of the estimation errors in

10



all the unknown parameters. This provides a lower bound for the covariance

matrix of any unbiased estimate. If any estimate achieves this lower bound,

it is the maximum likelihood estimate (WCE). Also, the ML estimate is asymp-

totically efficient; that is, it approaches the bound asymptotically as the

number of observations becomes large.

The calculation of the Fisher information matrix J is outlined in Appen-

dix B for the case M = 2. The simplest result is obtained by representing

the unknown covariance matrix C in the form

1 rC (10)/ I c = 2 0( gre-g 2

The errors of primary interest are those in r and g, which turn out to be

uncorrelated. Their variances are bounded by

2

Cy > g(11)

r - 2N

(12

2- 2

Note that the estimates are (potentially) much more accurate when the magni-

tude of the correlation coefficient r is near unity.

It can be shown that the Cramer-Rao bounds on the errors in estimating

c, r, g in the constant covariance case (SMI) are exactly the same as those

just presented for WCE. This means that the fluctuations in scale of the

covariance matrix do not, in principle, affect the accuracy with which the

elements of the constant part can be estimated.

The ML estimates of these parameters are

S IC1 2 1
* arg C .12 ' g = 2 2  ' r

I



Airborne MTI

Up to this point, the development of the WCE algorithm has been kept

as general as possible. It will subsequently be evaluated and compared with

4 SMI for a problem of particular interest, radar detection of slowly moving

ground targets from a moving aircraft, using both amulated and real radar

data. This section discusses this problem in some detail.

The motion of the radar beam causes ground clutter returns to have a

doppler frequency shift which depends on their position within the beam.

If the radar antenna beam is fairly broad in azimuth, ground clutter returns

from some part of the beam will have the same doppler frequency as the target

returns of interest, so that conventional doppler processing of returns from a

single antenna cannot separate targets from clutter.

One solution is to add a second antenna displaced from the first along

the direction of motion of the platform, so that the two antennas occupy the

sane position in space (or nearly so) at different times. Pulses transmitted

at these times yield nearly identical (i.e., highly correlated) returns from

stationary objects, while returns from moving objects differ because of the

motion. Subtraction of the returns received by the two antennas thus elimin-

ates most of the ground clutter, leaving only returns from the moving objects.

For simplicity, only processing of pairs of returns, one from each an-

tenna, in multiple range cells was simulated. The covariance matrix of a pair
th

of returns from the n range cell is shown in Appendix A to be of the form

A =oC = aon n n C2 22

The signal to be detected is of the form

* 1

l'- 12



where 8 is an arbitrary complex amplitude. An optimum processor for detecting

this signal computes 1w zj and compares it to a threshold, where

w= A-s = Cs. Thus

-C1 2eJ

w() = A s() = C =
-C1 + e3

It is convenient and causes no degradation to scale the weighting vector

so that w I = 1,

1 + e 1 1 c 22 -1 12

w()12. C 1 - ceJ
2 C22 -C1 2e 12 C2 2-C12 ej (13)

and detection is based on 1zI + w2 z2 1. If the clutter is highly correlated

(C 22 -IC 1 2 12<<) and if C22 -C1 2e
3' is not too small, i.e., if the signal is

sufficiently different in doppler from the clutter, then

w2  1 (14)2- C12

This means that the optimum weighting (13) which depends on the unknown

signal phase 4, can be approximated by one which depends only on the statistics

of the clutter, not on the nature of the desired signal.

The output signal-to-interference ratio (SIR) of a linear processor with

weighting vector w is

2

2

, 2

w Aw

13



For the optimum choice of w, the output SIR is

in SIR provided by the optimum processor is

, 1 + C2 2  -2Re(C 1 2e) - +
-22 n c12 12  22

This shows that the SIR improvement is quite large when the clutter is

highly correlated (C 2 2 -1C12 12« l).- A similar calculation for the approxi-

4 mately optimum, Doppler-independent processor shows that its SIR improvement

is

I I opt 1

a negligible difference in performance when I otis large.

The cancellation ratio is defined to be the ratio of input to output

interference powers of the canceller.

jw12E 1z1 2
The quE 1i *z2

2
The presence of jw in the numerator is equivalent to normalizing the

weights so that w, 1.

For the optimum processor

c 22-Ic121 -pt

14



which is a (weak) function of the Doppler phase, while for the approximate

processor ~ 122

r - 22  1012 (15)

independent of Doppler.

Simulation Results

The WCE algorithm was compared with SMI using simulated data. The basis

of comparison was the cancellation ratio (15).

Simulated data were generated in 40 range cells. The power levels (i.e.,

the a 2) in the cells were determined by selecting at random 40 numbers be-
n

tween 20 and 50 dB. The results are shown in Table I. For each range cell,

thirty-two independent pairs of complex Gaussian random numbers having the

covariance matrix

1 5I1-10 1

were then generated and scaled to the appropriate power level.

The SMI algorithm estimated C using the first 10 range cells and used
S-1 12

the result to compute z 1C z in all 40 cells. The input and output inter-
1 12 2

ference powers, IZ1 1
2 and Iz -CI2

1 z2 1
2 , in each of the 40 cells were averaged

over the 32 independent trials, and the results used to compute an empirical

cancellation ratio for each cell. These ratios were plotted as functions of

the input interference power.

The entire process was repeated using the adaptive algorithm proposed in

this paper on the same data set.

Figure 1 shows the cancellation ratios produced from the data by the ap-

proximately optimum, nonadaptive processor (14) which knows a priori the

interference statistics. The empirical cancellation ratios are clustered

about the theoretical value of 47 dB. This performance represents an upper

bound for the adaptive techniques.

15
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The same data processed by the SMI adaptive algorithm using 10 cells

produced the results shown in Figure 2. The cancellation has been reduced by

about 3 dB by the adaptivity. Note, however, that cancellation was consider-

ably improved in one range cell. This is range cell 6, which was one of the

cells used to estimate the covariance, and has the largest power level of

these 10 cells. It tends to dominate the SMI estimate, which weights the 10

cells equally.

Figure 3 shows the corresponding result for the WCE algorithm, also

adapting on the first 10 range cells. There is virtually no degradation due

to adaptation. In view of the increased computation required, however, this

modest increase in performance is not deemed significant. The real advantage

is revealed when signals are present in the learning sample.

To this end, :he data were modified by the addition of a simulated

target having 4 = i and adjustable amplitude to range cell 5.

Figures 4 a,b show tie effect on the cancellation performance of the SMI

and WCE algorithms, respectively, of a 20 dB signal present in cell 5. The

interference power in cell 5 is 38.7 dB, so the SIR is -18.7 dB. SMI per-

formance has degraded by 15 dB, while that of WCE is unaffected (the isolated

point is that for cell 5).

Table II lists the weights assigned to the 10 learning cells on each of

the 32 independent trials by WCE. Cell 5 is consistently deweighted by 30 or

40 dB relative to the other cells. It is therefore not surprising that the

presence of the signal has little effect on the covariance estimate.

The computations were repeated for a variety of signal levels, and again

using only the first 5 range cells for adaptation. The results are summarized

in Figure 5. WCE performance is not affected by the presence of a signal, no

matter how strong. SMI performance degrades at the rate of about 0.9 dB in

cancellation for each additional 1 dB of signal.

The performance of the WCE algorithm begins to degrade when targets are

present in half of the range cells used for covariance estimation. As the

number of targets increases beyond this point, WCE and SMI are both degraded

by about the same amount.

17
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Experimental Results

The simulation compared the performance of WCE and SMI estimators using

data which obeyed the WCE statistical model. It was to be expected, therefore,

that the WCE estimates would be better. In fact, the iteration which leads to

the WCE estimate can always be started with the SMI estimate, and subsequent

iterations can only increase the likelihood ratio.

The most important advantage of WCE, as revealed by simulation, is its

tendency not to suppress desired signals present in the learning sample. It

is important to see whether or not this advantage is maintained when using

real data which does not precisely match either the WCE or SMI statistical

models. For this reason, the two algorithms were compared using real data

from an airborne L-band MTI radar having two antennas. Data processing

consists of adaptive cancellation of each pair of pulses (one from each an-

tenna) followed by Doppler :faltering via a 32 point FFT, on each of 40 range

cells.

In most cases. the two algorithms perform equally well. However, in the

example to be presented hero, a moving target in range cell 15 (S/C = -12 dB)

causes a significant diffe:einice in performance. The cancellation obtained

with WCE using range cells 1.---20 for covariance estimation is shown in Fig. 6.

It is limited by the thermal noise power level PN" If clutter is cancelled

well below the residual noise level, the expected cancellation ratio is

Elz 11 2 P I
r 2 2P

Efz -wz~j 2 N

since Iwjz 1, so that

r(dB) = P I(dB)-P N(dB)-3

19



The cancellation ratios should thus form a straight line with a slope of 1

when plotted against the interference power PI (dB). This behavior can be seen

in the data. The Doppler-filtered canceller output is shown in Fig. 7.

The results produced by SMI using this data are shown in Figs. 8, 9.

Cancellation is degraded by about 9 dB. The flatness of the curve indicates

that thermal noise is no longer the limiting factor. The Doppler-filtered

residues show that the detectability of small moving targets has been reduced

considerably. The difference in performance would probably be much greater

were it not for the limit imposed on WCE by thermal noise.

SUMMARY

An algorithm for generating a maximum likelihood estimate of the covari-

ance matrix of a vector process, using multiple observations, has been de-

veloped. It is based on the assumption that the covariance matrices of the

observations are the same except for a scale factor. The resulting estimate

is a generalization of the sample covariance matrix in that it is a weighted

average of the sample covariance matrices of the individual observations. The

weights are computed via an iterative procedure.

Simulation results show that the adaptive "optimum" filter based on the

weighted estimate offers some improvement in interference rejection compared

to that based on the sample matrix estimate. The main advantage of the weighted

covariance estimate, however, is that it has far greater immunity to errors

caused by the presence of desired signals in the observations used for covari-

ance estimation. It is therefore valuable in situations where target-free

interference observations cannot be guaranteed.

a The major disadvantage of the technique is the large amount of computa-

tion required. It is best suited to problems in which the dimension of the

vector observations is small.

20
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Fig. 1. Nonadiptive cancellation (kncwn statistics).
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APPENDIX A

Derivation of Clutter Covariance Matrix for
Multiple Antenna Airborne Radar

Consider an airborne radar having M antennas with phase centers located

at positions md with respect to some common reference point, moving with

constant velocity vector v. Let <,be a vector from the reference point to an

incremental clutter patch at coordinates r,e at t = 0. The range vector from

the mth antenna to this patch at any time t is then (Fig. Al)

R (t) = R -md -tv
M1 -0

For md and tv sufficiently small, its length is approximately

R1t)=-R (R md + tR.v) A R -md + R t (Al)
m 0 R -o - -- 0 - 0

0

Note that R ,d and Ro are all functions of r and 0.

Let c(r,O) denote the complex amplitude of the return from the clutter
th

patch at (r,B), and G (r,e), the complex gain of the m antenna in thatm th
direction. Assume that the m antenna transmits a pulse at time t

m

s (t) = Re{u(t-t ) exp(j2f ot)}m 15m

It is assumed that only the transmitting antenna receives the resulting

returns, and that all returns are received before the next transmission from

any other antenna occurs. With these assumptions, the total clutter return

received by the mth antenna is*

r (t) = Re G u(t-t T(t)) exp j2wf (t-T(t)) drdO (A2)

where r(t) is the delay suffered by an incremental element of return received
(4 1

at time t . The behavior of T(t) can be quite complicated, in general, but

The (r,e) dependence of a, G , and T(t) has been suppressed for brevity.
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using the linear approximation (Al) it can be shown that T(t) is adequately

approximated by
R

0 2
eaR = T- T(t) a-(Ro -Md +Rit) =T m + T0t

A 0

where d = e 0d, ° =e *.v. Using this and neglecting the effect of time

compression on the complex modulation u(t), equation (A2) reduces to

r (t) = Re G2 u(t-t -T) exp j2 f (t-T -;o t ) drdOm f m 0 M0

4i This return is passed through a filter matched to the transmitted pulse shape,

yielding

C lt = frm(T) Re{u(T-t) exp {j21rfot}dT

[m
2 fR G2 {ift)

L-Re mX(t-tm-Tm'fd) exp {j dtm+m)

exp {-j2fff T } drd8 exp {j2wf t)

where the Doppler frequency fd = -f and T are functions of (r,O) andd.. 0 0 m

x(t,f) fu(T)u (-t)exp{j2fT dT

is the ambiguity function of the radar pulse (see [41, p. 70). The complex

modulation is sampled at time tm + T', yielding the complex clutter sample

Cm = f/fG 2 X('-Tmd ) exp{j2rfd(tm T)} exp{-j 2 nfoTm~drde

The factor 1/2 has been absorbed into a.
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It is now assumed that the maximum Doppler frequency of the clutter is much

less than the bandwidth B of the radar pulse, making possible the approximation

x(t,fd) X (t,O)

The covariance of any pair of clutter samples is then given by

* Gf2G .2
E(C n )  PG 2G X(T' -Tm ,0 ) X (T'-Tn,0) (A3)

m n JJ m nn

exp {j27rfd(t-t)} exp {-j2r(fO-fd) (T n ) }drdO

It will be assumed that the transit time across the antenna configuration

(max T -T ) is much less than the reciprocal of the radar bandwidth; the first
m n

argument of both ambiguity functions in (A3) can then be replaced by T'-T 0

Their product then becomes lX(T'-T,0) I2 . This is the envelope (squared) of

the compressed radar pulse and is an impulse-like function of T and therefore

of r. The remainder of the integrand varies very slowly with r compared to

IX1 2 , so the r integration merely produces a constant (fIxI
2dr) which can be

absorbed into P. Since it was already assumed that fd<<B, the last approxi-

mation also implies that f d (T m-Tn) << 1, so that this phase term may be

neglected. Thus

E{CmCC) = P(e)G (e)G expj 2I[fd(tm -tn )-fo (Tm -Tn d

where P, G, fd' and Tm -T are all implicitly functions of the sampling range

CT

R - Their variation with range is very slow, however, except for P. If

the clutter samples are confined to a range interval which is small compared

to the range, and if the clutter power distribution is the same in each range

cell except for a scale factor, i.e., if

P(R-,6) = F(R-)Q(e)
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then the covariance matrix of the clutter samples from a given range cell is

simply a constant matrix multiplied by a scale factor which is a function of

range.

Making the substitutions

t = mA
m

2fd = - f 0 -eX

f (Tm-Tn) - e R(m-n)
o m n -

the covariance element becomes

E(C Cn) = F(R') Q()G (6)G n (0) exp J2 4 (m-n)(4.vA + 4--d) d6

(A4)

The effective phase center location is defined to be the position of the
th

m antenna at the time it transmits. If adjacent antennas transmit in sequence,

the vector motion of the effective phase center between transmissions is then

d + vA. If the vectors d and v are collinear, this motion can be made zero by

proper choice of A. If the antenna patterns are identical (G G n), perfectm n

clutter correlation is obtained. More generally, if the antenna patterns are

real, as is usually the case, maximum correlation is obtained by choosing A to

minimize the projection of d + vA on the line of sight R at beam center.

3I
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APPENDIX B

Outline of Derivation of Information Matrix

The elements of the Fisher information matrix are

J.. = E{ -"13 aa. aa.i I

where Z is the likelihood ratio (3) and the a. 's are the unknown parameters.

The constant part of the covariance matrix C is parametrized as in(i0).

Let x denote any one of these real parameters. Then

_9_ N aj~d 1 z*C- aC C1z(l__=- ~ -- nC -C-iZn (Bl)
ax ax 2--n T

n

It will be convenient to define

1 C-l
n a-n

n

These are complex Gaussian random vectors with covariance C Using the

relation
[5 ]

alc =IdITr{C- -

and replacing z n by 'n, expression (Bl) can be written
-n T

a- = -n -Tr{C-I

- Note that

E( * ) = Tr{E( * )-} Tr(C- -a (B2)
-n ax -n n--n Tx ax

so that

E(-) = 0
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Let y denote any one of the parameters of C. Then

4E I E 'C~ Tr(Cl 3  
3Ci-~ Tr(C )3xD x-n -na 3y-mn m

[E( 'n* x 4, m - ) -Tr(Cla rx-' T) (B3)
-~1 ( 5~ n-nay -matyj

The following general result is useful in evaluating the above expression.

Let A, B denote arbitrary square matrices and let z be a circular complex

Gaussian vector with zero mean and covariance A. Then

E(z Az z Bz) E(EEA..z.z.)(EB kkzk z k

M EE A..B E(z z zz)
ijk. ij M i i k k

Ii The expectation can be evaluated using Reed's results[6

EM A iA B ki(A JiA k+ A PiA)
ijk.ik. jik ij

-(EEA..A )(EB A ) + EEE )(EB A .

.ij ji klkkkk .ikii k Xkiiik

-Tr(AA)Tr(AB) + Tr(AAAB) (B4)

Use of this result in (B3) results in

E -L' ) N Tr(C 5- C1  (B5)
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The other parameters a n2can be treated in a similar fashion. Using (3)

for the case M4 = 2,

z C zat2 -n -n 1

2 2 (2)2 2 -n . n1

Again note that

E( -(E(CC -2)
Da 22 

n__n

n n

1i (Tr(CC1 )-2) 0
02
n

The elements of the information matrix corresponding to the a0 are

E t ay E{( C~ -2)(r C~ -2)1
am 2un 2 m 2n 2 ltr -n-

n * *

Use of (B4) results in

E(~~ at at m (Tr(C -1CC -1C) +Tr(C- C)Tr(C- C)-41

m n n

a2

4 amn (6

n
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Finally, for the cross terms

E(T -) - E {E( T -)C 12 (4Cn_2)}
x -30n2m 4 x _ -z (C- Cx)  n

1 E * C * -2E a -n7x nWQn]

1 [Tr(C-i 'C C- l c ) + Tr(C- C)Tr(C- 'C) -2 Tr(C-  x

n

Tr(C -x) (B7)

n

Evaluation of (B5), (B6), (B7) yields the information matrix J. If the

vector of unknown parameters is ordered

i T 2 2

a = (,r,g, 1  O

the result is
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bNr 20 0 0 0

b 2N(1+r 2 -bNrg1 -brao1  -braN2

-2 2 I -1 -2 -1 -2
bNg (2-r) g ag aN

J =2 
+ -4- -

symmetric

2 -1
where b (-r)

The phase estimation error is seen to be independent of all the other esti-

mation errors. Its variance is bounded by

~ 2>

V 2Nr2
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The remaining portion of J can be written as

J, 2 (A'
-D (B8)

where D is diagonal with d 11 =b, d 22 = g1  fd~ = ak 2  k 3 , .N + 2}

1r -rr

B2xN 11

and I is the NxN identity matrix. Application of the formula for the inverse

of a partitioned matrix to (B8) yields

T -l -
(A -BB) -A- BQ-

1 ! D 1 D --~ 1  (B9)

- 1 B -B A 1Q
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